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Abstract—Sea lamprey, a destructive invasive species in
the Great Lakes in North America, is among very few fishes
that rely on oral suction during migration and spawning.
Recently, soft pressure sensors have been proposed to
detect the attachment of sea lamprey as part of the mon-
itoring and control effort. However, human decision is still
required for the recognition of patterns in the measured sig-
nals. In this article, a novel automated soft pressure sensor
array-based sea lamprey detection framework is proposed
using object detection convolutional neural networks. First,
the resistance measurements of the pressure sensor array are converted to mappings of relative change in resistance.
These mappings typically show two different types of patterns under lamprey attachment: a high-pressure circular
pattern corresponding to the mouth rim compressed against the sensor (“compression” pattern), and a low-pressure
blob corresponding to the partial vacuum region of the sucking mouth (“suction” pattern). Three types of object detection
algorithms, single-shot detector (SSD), RetinaNet, and YOLOv5s, are applied to the dataset of measurements collected in
the presence of sea lamprey attachment, and the comparison of their performance shows that YOLOv5s model achieves
the highest mean average precision (mAP) and the fastest inference speed. Furthermore, to improve the accuracy of the
prediction model and reduce the false positive (FP) rate due to the sensor’s memory effect, a filter branch with different
detection thresholds for the compression and suction patterns, respectively, is added to the original machine-learning
algorithm. The trained model is validated and used to automatically detect sea lamprey attachments and locate the
suction area on the sensor in real time.

Index Terms— Invasive species monitoring, machine learning, sea lamprey detection, soft pressure sensor.

I. INTRODUCTION

SEA lamprey (Petromyzon marinus) is a devastating, inva-
sive fish species in the Laurentian Great Lakes of North
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America requiring a multimillion-dollar annual control pro-
gram to protect native fish stocks. A single sea lamprey
is capable of consuming 40 lb of host fish during its
12–16-month parasitic life stage [1]. Following the invasion,
sea lampreys contributed to the collapse of native fish stocks
and of a fishery currently valued at $4.5 billion annually [2].
A binational effort, lead by the Great Lakes Fishery Com-
mission (GLFC), suppresses sea lamprey populations through
the use of selective chemical applications [2] and migratory
barriers [3], [4], and abundance is monitored through the
capture of migratory adults [2]. Migratory barriers block
not only invasive species, but desirable species and native
species as well resulting in a desire for selective passage [5],
[6] around migratory barriers for desirable species. Further-
more, maintaining a network of traps for assessment can be
labor-intensive and costly. A means to autonomously detect
and monitor sea lamprey could aid with the implementation
of selective passage, design of new trapping or population
assessment techniques, and help to understand their life his-
tory and ecology (e.g., refuge-seeking behavior and habitat
characteristics).

New sensor technology that targets a unique aspect of sea
lamprey biology and behavior may provide a solution for
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automated detection. During upstream migration, the spawning
phase adult sea lamprey will rest by attaching to smooth
surfaces such as rocks or artificial walls (dams, fishways, and
so on). They do so by creating negative pressure using their
oral disk like a suction cup creating a unique pressure pattern.
Pressure sensors paired with object detection technology may
be used to detect that pattern and identify the pattern of sea
lamprey attachment. Object detection is a technology for iden-
tifying instances of objects of a certain class in images, videos,
and other types of datasets. It has numerous applications, such
as number plate recognition [7], product identification [8], [9],
face detection and recognition [10], animal monitoring [11],
and autonomous driving [12]. Video analysis based on object
detection methods has been used to detect underwater adult
Pacific lampreys (Entosphenus tridentatus) [13]; however,
image quality may not be suitable under a wide range of
light conditions. Instead, underwater sea lampreys could be
detected by taking advantage of their oral suction trait [14] in a
more economical and efficient way using some proper pressure
sensors [15], [16], [17] or contact sensors [18]. This is feasible
since the suction of a sea lamprey’s oral disk on the sensor
would introduce distinct pressure patterns or related changes
in the sensor’s characteristics. Nevertheless, the sensor system
alone significantly relies on human intervention to recognize
the pressure patterns or contact events from the sensor’s output
signals and to further decide whether, when, and where the sea
lamprey is attaching.

To reduce the burden of human decisions, the sea lamprey
detection system needs to be automated. Before an automated
solution is possible, an algorithm must be trained and tested
to correctly identify the pressure pattern created by a sea
lamprey attachment. This article reports the first automated
sensing system for detecting sea lamprey attachment based on
a soft pressure sensor array. Specifically, machine-learning-
based object detection algorithms are used to learn features
from the measured data of a soft pressure sensor array and
perform automatic detection of sea lamprey attachment on the
generated mapping contours.

In this article, a comprehensive sea lamprey mapping con-
tour dataset is first generated for the training model to learn
features. These mappings typically show two different types
of patterns under lamprey attachment: a high-pressure circular
pattern corresponding to the mouth rim compressed against
the sensor (“compression” pattern) and a low-pressure blob
corresponding to the partial vacuum region of the sucking
mouth (“suction” pattern). Three types of object detection
algorithms are deployed for sea lamprey detection, including
single-shot detector (SSD) [19], RetinaNet [20], and YOLOv5s
(which is a small-scale model of YOLOv5 [21] that has
fewer layers of convolutional neural networks for faster and
simpler object detection tasks). Their validation performance
and inference speeds are evaluated and compared in-depth,
and the results show that YOLOv5s achieves the highest
mean average precision (mAP@0.5:0.95 up to 69.77%), and
the fastest inference speed (up to 8.4 ms per image) on
the experimental GPU device. Finally, a detection approach
based on the YOLOv5s model with a confidence filter unit is

proposed. In particular, different optimal detection thresholds
are proposed for the compression and suction patterns, respec-
tively, to reduce the false positive (FP) rate caused by the
sensor’s memory effect. The efficacy of the proposed method
is supported by experimental results on real-time underwater
detection of sea lampreys.

The rest of the article is structured as follows. Section II
reviews the state-of-the-art object detection frameworks.
Section III introduces the experimental animals and set up
with the soft pressure sensor array. Section IV presents the
sea lamprey dataset with its image annotation formats and
shows the assessment results of three object detectors to find
the best one. Then the sea lamprey detection approach with
a postprocessing unit is proposed in Section V. Experimen-
tal results for evaluating the postprocessing performance are
presented in Section VI. Concluding remarks are provided in
Section VII.

II. RELATED WORK

The state-of-the-art object detection algorithms can be
categorized into two main types: one-stage and two-stage
detectors. Representative two-stage object detectors are
region-based convolutional neural networks (R-CNN [22], fast
R-CNN [23], faster R-CNN [24], and mask R-CNN [25]),
which first use selective search algorithms to extract candidate
region proposals from the image and then classify every single
object and estimate its size with a bounding box. They achieve
higher detection accuracy but are typically slower than the one-
stage detectors, which predict bounding boxes over the images
without the region proposal step.

Examples of the most popular one-stage detectors include
you only look once (YOLO) [26], SSD [19], and Reti-
naNet [20]. YOLO reframes object detection as a single
regression problem from the image pixels to the bounding box
coordinates and associated class probabilities. More advanced
versions of YOLO have been released in the past few years,
such as YOLOv3 [27], YOLOv4 [28], and YOLOv5 [21].
Different from all prior releases, YOLOv5 is implemented
in PyTorch, which is well-supported on major platforms and
is versatile for research prototyping. SSD uses a single deep
neural network to output multiscale convolutional bounding
box and predicts category scores and box offsets for a set
of default bounding boxes. RetinaNet applies a modulat-
ing factor to the cross-entropy loss to address the extreme
foreground–background class imbalance during training. How-
ever, RetinaNet still designs two separate subnetworks in the
end: one for classifying anchor boxes, and the other for the
regression of object boxes, which could be merged into one
regression network in theory.

III. EXPERIMENTAL ANIMALS AND SETUP

A. Experimental Animals
A total of 140 spawning phase adult sea lampreys were

used to test on a 10-by-10 soft pressure sensor array during
September 2021 (n = 120) and June 2022 (n = 20). Sea
lampreys were captured in traps during upstream spawning
migration in the St. Marys River (2021; Michigan, USA, and
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Ontario, Canada) and the Cheboygan and Ocqueoc Rivers
(2022; Michigan, USA). Sea lampreys were transported to
Hammond Bay Biological Station (U.S. Geological Survey,
Great Lakes Science Center, Millersburg, Michigan) and
held in aerated, 1000-L flow-through tanks supplied con-
tinuously with Lake Huron water maintained at 8–12 ◦C
until tests were conducted. All sea lamprey experiments
were performed in accordance with protocols and guide-
lines approved by Michigan State University’s Institutional
Animal Care and Use Committee (IACUC, No. 02/18-028-
00, and AMEND202200009/PROTO202100177). After the
experiments in this study, the sea lampreys were housed for
use in further research by Hammond Bay Biological Station
staff.

B. Soft Pressure Sensor Array
As shown in Fig. 1(a), this work uses a 10-by-10 soft

pressure sensor array (with a sensing area of 10 × 10 cm2)
that is made of piezoresistive films sandwiched between two
layers of perpendicular copper tape electrodes, with polyester
tape encapsulated on an acrylic plate. The detailed fabrication
process is introduced in our previous work [15]. The sensor
array forms a resistor network, with its circuits illustrated in
Fig. 1(b).

At each sensor pixel, when a compressive pressure load is
applied (e.g., under the compression of the lamprey mouth
rim), the resistance at that pixel reduces, resulting in a
reduction in the corresponding measured resistance via the
coupling of the resistor network. Similarly, when a partial
vacuum pressure (e.g., under the suction of the lamprey mouth)
is applied on a sensor pixel, there will be a rise in the
resistance measurement. The fabricated pressure sensor has
a pressure sensing range between −10 and 235 kPa, and it
has a sensitivity of −0.192 kPa−1 between 0 and 3 kPa,
−0.016 kPa−1 between 3 and 28 kPa, and −0.002 kPa−1

between 28 and 50 kPa, respectively, as reported in our
previous work [15]. It is observed that, likely due to the
viscoelasticity of the films and their bonding, the resistance
measurements do not immediately return to the at-rest values
following the removal of the attachment. This memory effect,
which would cause FPs in the detection, is explicitly addressed
in the detection algorithm design.

C. Experimental Setup
As shown in Fig. 1(a), a voltage divider with a 1-k� refer-

ence resistor (Rref) was used to measure the resistance of the
pressure sensors at each pixel. An Arduino Mega 2560 micro-
controller board provided a 5-V voltage supply (Vcc) for the
pressure-sensing circuits and generated digital output signals
for channel selection. Two analog/digital multiplexer breakout
boards (SparkFun CD74HC4067, 16 channels) were used to
choose the circuits between one column and one row of
the perpendicular address lines. The output voltage (Vout)
on the selected resistor network circuits was measured by a
10-bit analog-to-digital converter (ADC) through the analog
input. The two-point resistance measurement Rk

j between the

Fig. 1. Hardware of the soft pressure sensor array-based sea lamprey
detection system [15]. (a) Experimental setup and (b) circuit model of
the resistor network for the pressure sensor array.

selected j th row and kth column can be calculated as follows:

Rk
j =

Vout

Vcc − Vout
Rref. (1)

The pressure-sensing panel was placed vertically along a
glass wall of a 200-L water tank, while the microcontroller
board and all other circuits were outside of the tank. The water
level in the tank was about 5 cm higher than the top row
electrode of the pressure sensing panel, submerging all the
sensing areas.

In each round of measurement, the pressure-sensing system
scanned the sensor array from the top left corner to the
bottom right corner. Resistance was measured consecutively
20 times at each pressure sensor and then the average was
taken as the measured two-point resistance at that pixel for that
sampling cycle. The Arduino program repeated the scanning
and measurement process every 1 s (1 Hz) in loops by
means of a timer interrupt. The resistance measurement data
were transferred to a Python program on a computer via
serial communication and then the data would be stored as
matrices in a spreadsheet file on the hard drive. Meanwhile,
the relative change (in %) in the resistance matrix between the
current sampling time and the initial value was calculated and
converted to a mapping contour plot, which was also stored in
the hard drive. Once the Arduino program started to run and
measure the resistance periodically, an adult sea lamprey was
transferred to the tank and introduced to attach to the sensing
area for a certain time (e.g., >20 s). Resistance measurement
lasted until the lamprey detached from the panel by itself or
until the first 2 min of attachment elapsed.

IV. TRAINING MODELS ON THE SEA LAMPREY DATASET

This section first introduces the dataset collected from the
sea lamprey experiments on the soft pressure sensor array,
which are mapping contour plots converted from the resistance
measurements. They can be categorized into either a “com-
pression” pattern or a “suction” pattern. We present the image
annotation formats for three object detection models: SSD,
RetinaNet, and YOLOv5 and further implement the training
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Fig. 2. Typical mapping contour plots of the 10-by-10 soft pressure sensor array with the attachment of an adult sea lamprey. Typical compression
patterns: (a) with partial edges or points shown in blue reflecting compression of the lamprey’s suction disk, (b) with a full circular pattern shown in
blue, (c) with the compression area on the boundary of the sensing area, and (d) with a corrupted circular pattern connected to adjacent rows or
columns due to crosstalk of the sensor array. Typical suction patterns: (e) with a triangular blob shown in red reflecting the suction area, (f) with an
intact round (or octagon) blob shown in red, (g) with the suction area on the boundary of the sensing area, and (h) with a corrupted polygon pattern
extended to adjacent rows or columns due to crosstalk of the sensor array.

and validation processes on each machine-learning model to
find the best sea lamprey detector.

A. Mapping Contour Patterns
In this work, a total of 3094 colored mapping contour

plots generated during the sea lamprey attachment periods
were collected from 120 groups of sea lamprey experiments,
which were annotated with bounding box labels for training
and validating the neural networks. Each of these selected
mapping contours had a resolution of 640 × 640 pixels and
could be categorized into either a “compression” pattern or a
“suction” pattern based on its overall appearance and contour
levels. There were 623 compression plots and 2471 suction
plots, and eight typical mapping contour plots are shown in
Fig. 2, including four compression patterns [Fig. 2(a)–(d)] and
four suction patterns [Fig. 2(e)–(h)]. For instance, the com-
pression pattern can be partial edges or discrete points in blue
[Fig. 2(a)] reflecting nonuniform compression of the lamprey’s
suction disk on the sensor array, a full circular pattern in
blue [Fig. 2(b)], an arc in blue on the boundary [Fig. 2(c)],
or a corrupted circular pattern connected to adjacent rows
or columns [Fig. 2(d)] due to crosstalk of the sensor array.
Similarly, the suction patterns are typically complementary to
the compression patterns, which appear in red or orange blobs.

Note that, when a mapping contour plot displayed both a
compression pattern and a suction pattern, such as Fig. 2(a),
it would still be categorized into only one pattern with the
higher magnitude in the absolute relative change in resistance.

The annotated mapping contour dataset was then split into
training and validation subsets with a ratio of 8:2.

On the other hand, a total of 3875 mapping contours
obtained from the remaining 20 groups out of the whole
140 sea lamprey experiments were used to test the trained
model with a postprocessing filter to decide the optimal
confidence thresholds for the compression pattern and suction
pattern, respectively.

B. Image Annotation
Fig. 3 shows an example of the annotation of the

ground-truth bounding box on a suction pattern mapping
contour. The coordinates of the ground-truth bounding box
were obtained from the experimental videos synchronized
with the pressure sensor measurements as follows. During the
experiments, a cellphone camera was used to record activities
on the whole sensor array. The mapping contour plots in a
time sequence from a lamprey experiment were converted to
an animation video. The animation contour video was then
synchronized with the recorded experimental video. The video
frames were extracted from the synchronized experimental
video every 1 s, the same frame rate as that for the mapping
contour animation video. Finally, the coordinates of the top left
vertex (Colmin, Rowmin) and the bottom right vertex (Colmax,
Rowmax) of the ground-truth bounding box were estimated
with one decimal point between the boundary limits of 1.0 and
10.0.

Different object detectors may accept different formats of
bounding box labels. The RetinaNet framework uses (class,
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Fig. 3. Illustration of the ground-truth bounding box annotation.
(a) Image of the 10-by-10 soft pressure sensor array under suction of
an adult sea lamprey [15] (as shown in the inset), with the bounding
box shown in yellow dashed lines covering the attachment area, and
with the row and column axes labeled for dataset annotation. (b) Cor-
responding mapping contour plot of relative change in measured two-
point resistance, with the ground-truth bounding box in red solid lines
depicted on it.

xmin, ymin, xmax, ymax) as its label format, where class is either
0 or 1, which represents a “compression” or “suction” pattern,
respectively; (xmin, ymin) denotes the pixel coordinates of the
top left vertex, and (xmax, ymax) denotes those of the bottom
right vertex, which can be obtained from the row and column
coordinates

xmin =

(
Colmin − 1

10 − 1
· rw + rlm

)
· Figw (2)

xmax =

(
Colmax − 1

10 − 1
· rw + rlm

)
· Figw (3)

ymin =

(
Rowmin − 1

10 − 1
· rh + rtm

)
· Figh (4)

ymax =

(
Rowmax − 1

10 − 1
· rh + rtm

)
· Figh (5)

where the meanings of the parameters can be found in Table I.
On the other hand, in addition to the class label, the SSD

and YOLOv5 object detection models take the normalized
coordinates of the bounding box center (xcenter, ycenter), and
the normalized width wbbox and height hbbox of the bounding
box as accepted labels, and the formulas are given below

xcenter =

(
Colmin+Colmax

2 − 1
10 − 1

· rw + rlm

)
(6)

ycenter =

(
Rowmin+Rowmax

2 − 1
10 − 1

· rh + rtm

)
(7)

wbbox =
Colmax − Colmin − 1

10 − 1
· rw (8)

hbbox =
Rowmax − Rowmin − 1

10 − 1
· rh . (9)

C. Assessment of Three Object Detectors
The object detection frameworks, SSD, RetinaNet, and

YOLOv5s, were evaluated for sea lamprey attachment pattern

TABLE I
PARAMETERS FOR GENERATING THE MAPPING CONTOUR PLOTS

detection using the same training and validation datasets. The
network hyperparameters for the training process, including
the initial learning rate, momentum, weight decay, a minimum
score threshold, and the nonmaximum suppression (NMS) [32]
threshold, are chosen empirically using typical values that
are used in common object detection networks, as listed in
Table II. Here, the score threshold is the first filtering step
to remove the very unlikely bounding boxes, while the NMS
threshold is an evaluation metric to compare one candidate
bounding box with multiple other bounding box candidates.
The NMS is realized in this way: if they mutually share
an IoU larger than the NMS threshold, then these bounding
boxes could be merged into only one box with the maximum
confidence score.

The training and validation process was implemented on the
desktop PC with a GPU of NVIDIA GeForce RTX 3060 Ti
(1.69 GHz boost clock) and 32.0 GB RAM. The input image
of the mapping contours has a size of 640 × 640, without a
colorbar plotted in it.

To quantitatively evaluate the validation performance, mAP
is used, which is related to other performance metrics such
as true positive (TP), FP, true negative (TN), false negative
(FN), precision (P), recall (R), and average precision (AP).
To decide whether a prediction is a TP or FP, the intersection
over union (IoU) between the predicted and ground-truth
bounding boxes, IoUg−t

pred, was calculated. If IoUg−t
pred ⩾ IoU,

then it is a TP, which means that the prediction as positive is
correct; otherwise, it is regarded as an FP, meaning there was
no object at that predicted place. Besides, FN means failing
to predict an object that was actually there, and TN means the
prediction as negative was true and there was indeed no object
there. The corresponding TN rate, FP rate, TN rate, and FN
rate are denoted as TPR, FPR, TNR, and FNR, respectively.
The precision P represents the accuracy of the TN prediction
among all the positive predictions, while the recall R depicts
the percentage of TN prediction over all actual positives. They
are calculated from the following formulas:

P =
TPR

TPR + FPR
(10)

R =
TPR

TPR + FNR
. (11)

Once the confidence scores of all predicted bounding boxes
were obtained, the predictions were sorted in a descent order
according to the confidence value. A few additional rounds
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Fig. 4. Plots of mAP curves of different approaches in the validation process. (a) SSD, (b) RetinaNet, and (c) YOLOv5s.

TABLE II
HYPERPARAMETERS FOR TRAINING THE SEA LAMPREY

DETECTION NETWORKS

of performance evaluation were conducted. Specifically, each
score was iteratively assigned as the IoU threshold to decide
whether each prediction was a TP, FP, TN, or FN. And
each new confidence-assigned IoU threshold resulted in a new
precision value and a recall value, P and R, which could be
used to plot the precision–recall curve. The average precision
(AP) was then calculated as the area underneath the precision-
recall curve

AP =

∫ 1

0
P (R) d R. (12)

And the mAP would be calculated by taking the mean AP
over all classes and/or overall IoU thresholds. For instance,
mAP@0.5 represents the mAP over all classes with an IoU
threshold of 0.5 in the first round of deciding the prediction’s
performance, while mAP@0.5:0.95 has a similar meaning but
it is further averaged over ten consecutive IoU thresholds from
0.5 to 0.95 with a step of 0.05.

The mAP curves are shown in Fig. 4 for SSD and RetinaNet
after training for 100 epochs, and for YOLOv5s models
after 200 epochs. The epoch numbers were selected differ-
ently to achieve the best and stable performance for each
model. Particularly, the maximum values of mAP@0.5 and
mAP@0.5:0.95 as well as the averaged GPU speed for image
inference are listed in Table III. As can be seen, RetinaNet
achieved the highest mAP@0.5 among all three models,
93.68%, compared to SSD’s 90.79% and YOLOv5s’ 92.11%.

TABLE III
COMPARISON OF VALIDATION RESULTS OF DIFFERENT ALGORITHMS

FOR SEA LAMPREY DETECTION

However, its maximum mAP@0.5:0.95 value was 66.63%,
which was smaller than that of YOLOv5s, 69.77%. Basically,
mAP@0.5:0.95 is a more comprehensive evaluation metric
for object detection algorithms, as it takes multiple scales
of IoU into consideration, which usually generates a more
precise prediction. On the other hand, YOLOv5s cost the
least inference time for each image, 8.4 ms on this GPU,
which is qualified for future real-time sea lamprey detection
applications. Therefore, YOLOv5s would be the best detector
for this study.

V. FILTERED YOLOV5S FOR MITIGATION OF THE
SENSOR MEMORY EFFECT

This section presents a real-time automated sea lam-
prey detection approach using an object detection method.
As shown in Fig. 5, the proposed YOLOv5s model-based sea
lamprey detection neural networks consists of three parts:
a deep convolutional neural network backbone extracting
feature maps from the input mapping contour image, a top-
down architecture network neck constructing multiscale fea-
ture maps, and a confidence score filter end. The backbone
and the neck can directly learn features from the measure-
ments of a soft pressure sensor array and then predict the
bounding box, class, and confidence of the input contour
image. Meanwhile, due to the soft pressure sensor’s memory
effect, the detection network will view the leftover patterns
following the detachment as a normal compression or suction
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Fig. 5. Diagram of the soft pressure sensor and YOLOv5s model-based sea lamprey detection approach.

pattern, which could cause FPs in prediction. To mitigate
such memory effect-induced faulty detection, a postprocessing
head that filters the confidence of the compression pattern
and suction pattern separately is added to the sea lamprey
detection network. Each of the three aforementioned elements
is elaborated on next.

A. Feature Learning Backbone and Neck of YOLOv5
As shown in the detailed diagram in Fig. 5, the feature

learning networks of YOLOv5s mainly use three Bottleneck
Cross Stage Partial (BottleneckCSP) Networks [29] as its
backbone. The backbone first adopts a Focus layer [21] to
slice the input images and reshape the dimensions, then four
ConvBNLeaky modules are deployed interdigitatedly between
the BottleneckCSP modules, each of which contains a con-
volution layer that is connected with a batch normalization
(BN) layer and a LeakyReLU activation layer. After the last
ConvBNLeaky layer, a spatial pyramid pooling (SPP) [30]
module is used to remove the fixed-size constraint of the
networks. The feature maps extracted from three levels of the
backbone will be merged into the following neck part at three
corresponding levels.

The feature fusion neck of YOLOv5s is constructed in a
top-down feature pyramid network (FPN) [31] for building
high-level semantic feature maps at all scales. These fea-
tures are then enhanced with the features from the previous
bottom-up pathway via lateral connections by concatenation,
and the fused feature maps will be transferred to a ConvBN-
Leaky layer followed by another BottleneckCSP network and
a basic 2-D convolution layer. The inference output will be
sent to a sigmoid activation layer to regress the normalized

bounding box center coordinates and the normalized widths
and heights. Finally, an NMS [32] technique is applied to
select the best bounding boxes from multiple candidates.

B. Postprocessing With Confidence Thresholds
After the feature fusion block, bounding box candidates

of predicted sea lamprey attachment are obtained. Each of
the valid candidates contains a pair of normalized center
coordinates, a pair of normalized width and height, a class
label, and a final confidence score. The confidence score
is a probability that an object belongs to one class, which
means the product of the object confidence Confobj and the
class confidence Confcls. The object confidence is calculated
from the IoU between the predicted bounding box and the
ground-truth bounding box

IoUg−t
pred =

Area of Intersection
Area of Union

(13)

Probj =

{
0, if IoUg−t

pred = 0
1, otherwise

(14)

Confobj = Probj · IoUg−t
pred. (15)

The class confidence is a conditional probability of the class
when there is an object being predicted at that cell

Confcls = Prcls|obj. (16)

So, the final confidence score can be written as follows:

Conf = Confcls · Confobj = Prcls|obj · Probj · IoUg−t
pred. (17)

The trained YOLOv5s model achieved good performance
for the sea lamprey compression or suction pattern detection.
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Nevertheless, faulty prediction of sea lamprey attachment was
found in many lamprey experiments in the testing dataset.
As discussed in Section III-B, the soft pressure sensor had
some inherent memory effect when the compression was
removed or when the suction pressure was released. Such
a memory effect often lasted for more than 10 s after the
lamprey detached from the sensor array. The overall memory
effect showed a relatively low confidence score, thus it is
promising to mitigate the false prediction by setting an addi-
tional postprocessing module with a higher threshold. Note
that in most cases, the memory effect was more pronounced
when the suction was removed than when the compression
was removed from the sensor, which inspired us to set two
different confidence thresholds for the compression pattern and
the suction pattern, respectively.

The final confidence scores are fed into a confidence filter to
remove all the bound box predictions with a confidence score
less than a designed threshold. This filtering process proves to
be effective for suppressing the sensor’s memory effect as it
only outputs the bounding box information at the beginning
of the hardware’s memory stage and prevents false detection
in the remaining time. Two separate confidence thresholds (θC
and θS) for the compression pattern and the suction pattern,
respectively, are optimally selected, which will be discussed
in Section VI. The output will be given according to the
confidence value and the confidence threshold of that class

Output =


BBoxcompression, if class = 0 and Conf ⩾ θC

BBoxsuction, if class = 1 and Conf ⩾ θS

None, otherwise.
(18)

VI. RESULTS AND DISCUSSION

The testing dataset from the remaining 20 groups of
sea lamprey experiments was used for testing the trained
YOLOv5s model and getting class and confidence scores.
Then the results with the ground-truth labels were investigated
in-depth to find the optimal confidence thresholds that could
not only improve the positive predictions, but also suppress FP
predictions. We first split the testing output dataset into four
groups: the true compression subset, the false compression
subset, the true suction subset, and the false suction subset.
For the compression subsets, a confidence threshold (θC ) was
set as a variable, changing from 0.05 to 1.0. According to this
compression confidence threshold, the compression prediction
dataset could be divided into four categories: TN compression
(TPC), FP compression (FPC), TN compression (TNC), and
FN compression (FNC). The corresponding TN rate, FP rate,
TN rate, and FN rate for the compression pattern are noted as
TPRC, FPRC, TNRC, and FNRC, respectively. In this way,
the precision (PC ), recall (RC ), and the F-1 Score (F1C ) of
the compression pattern could be evaluated as follows:

PC (θC ) =
TPRC (θC )

TPRC (θC ) + FPRC (θC )
(19)

RC (θC ) =
TPRC (θC )

TPRC (θC ) + FNRC (θC )
(20)

F1C (θC ) =
2 · PC (θC ) · RC (θC )

PC (θC ) + RC (θC )
. (21)

Fig. 6. Postprocessing results on the sea lamprey testing dataset with
the confidence threshold as the variable. (a) F1-score curves and (b) FP
rate curves, for both compression and suction patterns.

Here, F-1 score is a metric that balances the precision
and the recall using their harmonic mean. The performance
evaluation metrics for the suction pattern can be obtained
similarly from the suction dataset. Then, the F-1 score curves
of both compression and suction patterns can be drawn,
as shown in Fig. 6(a). The maximum F-1 score is achieved
as 0.88359 and 0.51842, when the confidence threshold is
0.1309 for the compression pattern, and 0.344 for the suction
pattern, respectively.

In the meantime, the corresponding FP rate curves are
shown in Fig. 6(b), which are directly related to the faulty
detection due to the memory effect. As depicted in the figure,
when the maximum F-1 score is achieved for the compression
pattern and the suction pattern, respectively, the corresponding
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Fig. 7. Illustration of the faulty detection problem due to the sensor’s memory effect. (a) Image sequence of the pressure sensor array with
ground-truth bounding boxes. (b) Corresponding mapping contour plots with bounding box predictions from the YOLOv5s detection model without
postprocessing (which means the confidence thresholds are both 0.05 for compression and suction patterns). (c) Filtered prediction results with a
confidence threshold of 0.131 for the compression pattern and 0.344 for the suction pattern, respectively.

FP rate reaches 0.51923 and 0.65431, separately. Moreover,
the higher the confidence threshold is, the lower the FP rate for
both compression and suction patterns. However, this affects
the F-1 score as well and would possibly reduce it when the
threshold is too high. Therefore, we propose to take both
the F-1 score and the FPR into consideration to determine
a “tradeoff” between high positive prediction and low false
prediction. This was realized by introducing a regularization
coefficient to the following cost function:

LC (θC ) = F1C (θC ) − λ · FPRC (θC ) (22)

where λ ⩾ 0 is the regularization (or penalty) parameter, which
controls the relative importance of the F-1 score with regard
to the regularization FPR term, and the subtract operation is
used since higher F-1 score and lower FPR are desirable. The
choice of the value of the regularization parameter λ can be
determined by the specific purpose or focus of that application.

And the optimal confidence threshold θ̂C for the compres-
sion pattern was selected to maximize this cost function

θ̂C = arg max
θC

LC (θC ) . (23)

The cost function and the optimal confidence threshold for
the suction pattern can be achieved similarly.

As an illustration, Fig. 7(a) shows a sequence of images
from the recorded experimental video with ground-truth
bounding box annotation, Fig. 7(b) shows the correspond-
ing mapping contours with the original predictions from
the YOLOv5s model, and Fig. 7(c) shows the correspond-
ing mapping contours with the filtered predictions from the
YOLOv5s model with two designed confidence thresholds.
The corresponding predicted information for this time period
is also listed in Table IV. At the first second (t = 231 s),
a sea lamprey’s mouth was attached on the right side of the
sensor array, while the original prediction showed a correct
compression pattern in Fig. 7(b). Then in the next second,
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TABLE IV
PREDICTED INFORMATION DURING AN INTERVAL OF THE SENSOR’S

MEMORY EFFECT

the sea lamprey slid to the right boundary and disengaged
from the sensor array. The original predicted bounding box
in Fig. 7(b) at this time instant did not track the sliding
of the suction pattern to the right side. Moreover, in the
following time interval (231–238 s), the lamprey had been
completely away from the sensor array, but there were still
suction patterns shown in the following mapping contours,
and consequently, the original YOLOv5s detection network
still plotted predicted bounding boxes on each contour in
Fig. 7(b). On the contrary, when the confidence threshold was
set as 0.131 for the compression pattern, and 0.344 for the
suction pattern in the postprocessing unit (in this case, λ = 0),
the filtered predictions turned out to be correct with most
of the false prediction bounding boxes not displayed on the
results. This filtering process with a pair of selected confidence
thresholds proves to be simple but effective to soft pressure
sensor array-based sea lamprey detection. To demonstrate the
performance of the proposed method in a more visualized way,
an animated contour video with the corresponding recorded
sea lamprey experimental video is provided in the Supporting
Video. In addition, as shown in the second part of the video,
when the sea lamprey was housed in a perforated cage under-
water at a depth of 24 in, where it could swim and explore
freely by itself, our proposed method can still effectively
detect the sea lamprey’s attachment. This demonstrates the
robustness of our sea lamprey detection system under various
experimental conditions.

VII. CONCLUSION AND FUTURE WORK

Sea lamprey is a destructive invasive fish species in the
Great Lakes, which has a specific oral suction trait that can
be utilized for sea lamprey detection. This work introduced an
automated soft pressure sensor array-based sea lamprey detec-
tion approach using object detection neural networks, with a
designed confidence threshold to mitigate the sensor’s memory
effect before final prediction outputs. We first collected a
comprehensive sea lamprey dataset of attachment mapping
contours with two major patterns: “compression” and “suc-
tion” patterns and annotated the dataset with a ground-truth
bounding box and class estimated from the synchronized
experimental videos. Then three different object detection
models were trained and validated on this sea lamprey dataset.
By evaluating their overall performance, the YOLOv5s model
was selected as our sea lamprey detection approach. More
importantly, to achieve the best precision and suppress false
prediction due to the sensor’s memory effect, a postprocessing

unit was added to the YOLOv5s model with two different
confidence thresholds for the two categories of patterns. And
the tradeoff between higher precision and lower FP rate could
be achieved by a regularization method.

For future work, we will develop soft pressure sensor arrays
with larger sensing areas and higher spatial resolution on soft
and nonflat substrates and test our automated sea lamprey
detection approach on these sensors. The hyperparameters
for training the sea lamprey detection networks will also be
tuned to find optimized values. Furthermore, the developed
automated lamprey detection system will be experimentally
tested in the field environment, to evaluate its performance
and robustness in the presence of practical challenges such
as flow disturbances and variations in ambient temperatures.
On the other hand, although the filter unit added to this
sea lamprey detection system has been proven to be simple
and efficient for mitigation of the sensor’s memory effect,
the mapping contour images are processed frame by frame
individually according to the output confidence, and the sea
lamprey’s suction dynamics has not been taken into consid-
eration, which leads to decreasing intensity of patterns and
may create potential problems such as missing detected pattern
that includes actual attachment instance (i.e., FN prediction).
Therefore, an alternative way to mitigate the sensor’s memory
effect might be looking into the time-series data of the output
class and confidence and even the bounding box coordinates.
By developing another recurrent neural network (RNN) as
the postprocessing unit to learn from these time series data,
the sea lamprey’s suction dynamics such as the varying trend
of the mapping contour patterns between the attachment and
detachment events is possible to be captured, thus a more
robust detection might be achieved. In addition to RNNs,
a simpler approach for future investigation could include using
a window of snapshots instead of a single snapshot to extract
the trend in the patterns.
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